SFr. 68.00
€ 73.44


bestellen

Artikel-Nr. 31151119


Diesen Artikel in meine
Wunschliste
Diesen Artikel
weiterempfehlen
Diesen Preis
beobachten

Weitersagen:



Autor(en): 
  • Aaron Jones
  • Benjamin Johnston
  • Christopher Kruger
  • The Unsupervised Learning Workshop: Get started with unsupervised learning algorithms and simplify your unorganized data to help make future predictio 
     

    (Buch)
    Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 3 Artikel!


    Übersicht

    Auf mobile öffnen
     
    Lieferstatus:   i.d.R. innert 7-14 Tagen versandfertig
    Veröffentlichung:  Juli 2020  
    Genre:  EDV / Informatik 
    ISBN:  9781800200708 
    EAN-Code: 
    9781800200708 
    Verlag:  Packt Publishing 
    Einband:  Kartoniert  
    Sprache:  English  
    Dimensionen:  H 235 mm / B 191 mm / D 29 mm 
    Gewicht:  1014 gr 
    Seiten:  550 
    Zus. Info:  Paperback 
    Bewertung: Titel bewerten / Meinung schreiben
    Inhalt:
    Learning how to apply unsupervised algorithms on unlabeled datasets from scratch can be easier than you thought with this beginner's workshop, featuring interesting examples and activities Key Features Get familiar with the ecosystem of unsupervised algorithms Learn interesting methods to simplify large amounts of unorganized data Tackle real-world challenges, such as estimating the population density of a geographical area Book Description Do you find it difficult to understand how popular companies like WhatsApp and Amazon find valuable insights from large amounts of unorganized data? The Unsupervised Learning Workshop will give you the confidence to deal with cluttered and unlabeled datasets, using unsupervised algorithms in an easy and interactive manner. The book starts by introducing the most popular clustering algorithms of unsupervised learning. You'll find out how hierarchical clustering differs from k-means, along with understanding how to apply DBSCAN to highly complex and noisy data. Moving ahead, you'll use autoencoders for efficient data encoding. As you progress, you'll use t-SNE models to extract high-dimensional information into a lower dimension for better visualization, in addition to working with topic modeling for implementing natural language processing (NLP). In later chapters, you'll find key relationships between customers and businesses using Market Basket Analysis, before going on to use Hotspot Analysis for estimating the population density of an area. By the end of this book, you'll be equipped with the skills you need to apply unsupervised algorithms on cluttered datasets to find useful patterns and insights. What you will learn Distinguish between hierarchical clustering and the k-means algorithm Understand the process of finding clusters in data Grasp interesting techniques to reduce the size of data Use autoencoders to decode data Extract text from a large collection of documents using topic modeling Create a bag-of-words model using the CountVectorizer Who this book is for If you are a data scientist who is just getting started and want to learn how to implement machine learning algorithms to build predictive models, then this book is for you. To expedite the learning process, a solid understanding of the Python programming language is recommended, as you'll be editing classes and functions instead of creating them from scratch.

      



    Wird aktuell angeschaut...
     

    Zurück zur letzten Ansicht


    AGB | Datenschutzerklärung | Mein Konto | Impressum | Partnerprogramm
    Newsletter | 1Advd.ch RSS News-Feed Newsfeed | 1Advd.ch Facebook-Page Facebook | 1Advd.ch Twitter-Page Twitter
    Forbidden Planet AG © 1999-2024
    Alle Angaben ohne Gewähr
     
    SUCHEN

     
     Kategorien
    Im Sortiment stöbern
    Genres
    Hörbücher
    Aktionen
     Infos
    Mein Konto
    Warenkorb
    Meine Wunschliste
     Kundenservice
    Recherchedienst
    Fragen / AGB / Kontakt
    Partnerprogramm
    Impressum
    © by Forbidden Planet AG 1999-2024