|
The Statistical Physics of Fixation and Equilibration in Individual-Based Models
|
(Buch) |
Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 3 Artikel!
Lieferstatus: |
Auf Bestellung (Lieferzeit unbekannt) |
Veröffentlichung: |
Juni 2018
|
Genre: |
Naturwissensch., Medizin, Technik |
|
B /
bioinformatics /
Biomathematics /
Biomedical Research /
Cancer Research /
Complex systems /
Data-driven Science, Modeling and Theory Building /
Ecological science, the Biosphere /
Econophysics /
game theory /
Game Theory, Economics, Social and Behav. Sciences /
Information technology# general issues /
Mathematical and Computational Biology /
Maths for scientists /
molecular biology /
Oncology /
Philosophy of Mathematics /
Physics and Astronomy /
Probabilities /
Probability & statistics /
Probability Theory /
Probability Theory and Stochastic Processes /
Sociophysics /
Stochastics |
ISBN: |
9783319822969 |
EAN-Code:
|
9783319822969 |
Verlag: |
Springer Nature EN |
Einband: |
Kartoniert |
Sprache: |
English
|
Serie: |
Springer Theses |
Dimensionen: |
H 235 mm / B 155 mm / D |
Gewicht: |
285 gr |
Seiten: |
164 |
Illustration: |
XV, 164 p. 63 illus., 13 illus. in color., farbige Illustrationen, schwarz-weiss Illustrationen |
Bewertung: |
Titel bewerten / Meinung schreiben
|
Inhalt: |
This thesis explores several interdisciplinary topics at the border of theoretical physics and biology, presenting results that demonstrate the power of methods from statistical physics when applied to neighbouring disciplines. From birth-death processes in switching environments to discussions on the meaning of quasi-potential landscapes in high-dimensional spaces, this thesis is a shining example of the efficacy of interdisciplinary research. The fields advanced in this work include game theory, the dynamics of cancer, and invasion of mutants in resident populations, as well as general contributions to the theory of stochastic processes. The background material provides an intuitive introduction to the theory and applications of stochastic population dynamics, and the use of techniques from statistical physics in their analysis. The thesis then builds on these foundations to address problems motivated by biological phenomena. |
|