SFr. 179.00
€ 193.32


bestellen

Artikel-Nr. 14317286


Diesen Artikel in meine
Wunschliste
Diesen Artikel
weiterempfehlen
Diesen Preis
beobachten

Weitersagen:


Herausgeber: 
  • Ruben Jakob
  • Albrecht Küster
    Autor(en): 
  • Friedrich Sauvigny
  • Stefan Hildebrandt
  • Ulrich Dierkes
  • Minimal Surfaces 
     

    (Buch)
    Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 3 Artikel!


    Übersicht

    Auf mobile öffnen
     
    Lieferstatus:   Auf Bestellung (Lieferzeit unbekannt)
    Veröffentlichung:  Dezember 2012  
    Genre:  Schulbücher 
     
    Analysis / B / Calculus of variations / Calculus of Variations and Optimal Control; Optimization / Calculus of Variations and Optimization / Complex analysis, complex variables / Differential & Riemannian geometry / Differential calculus & equations / Differential Geometry / Differentialrechnung und -gleichungen / Differentielle und Riemannsche Geometrie / Functions of a Complex Variable / Functions of complex variables / Komplexe Analysis, komplexe Variablen, Funktionentheorie / Mathematical physics / Mathematics and Statistics / Mathematische Physik / Optimization / Partial Differential Equations / Theoretical, Mathematical and Computational Physics
    ISBN:  9783642265273 
    EAN-Code: 
    9783642265273 
    Verlag:  Springer Nature EN 
    Einband:  Kartoniert  
    Sprache:  English  
    Serie:  #339 - Grundlehren der mathematischen Wissenschaften  
    Dimensionen:  H 235 mm / B 155 mm / D  
    Gewicht:  1068 gr 
    Seiten:  692 
    Illustration:  XVI, 692 p. 149 illus., 9 illus. in color., farbige Illustrationen, schwarz-weiss Illustrationen 
    Bewertung: Titel bewerten / Meinung schreiben
    Inhalt:
    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling´s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau´s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche´s uniqueness theorem andTomi´s finiteness result. In addition, a theory of unstable solutions of Plateau´s problems is developed which is based on Courant´s mountain pass lemma. Furthermore, Dirichlet´s problem for nonparametric H-surfaces is solved, using the solution of Plateau´s problem for H-surfaces and the pertinent estimates.
      



    Wird aktuell angeschaut...
     

    Zurück zur letzten Ansicht


    AGB | Datenschutzerklärung | Mein Konto | Impressum | Partnerprogramm
    Newsletter | 1Advd.ch RSS News-Feed Newsfeed | 1Advd.ch Facebook-Page Facebook | 1Advd.ch Twitter-Page Twitter
    Forbidden Planet AG © 1999-2025
    Alle Angaben ohne Gewähr
     
    SUCHEN

     
     Kategorien
    Im Sortiment stöbern
    Genres
    Hörbücher
    Aktionen
     Infos
    Mein Konto
    Warenkorb
    Meine Wunschliste
     Kundenservice
    Recherchedienst
    Fragen / AGB / Kontakt
    Partnerprogramm
    Impressum
    © by Forbidden Planet AG 1999-2025