SFr. 201.00
€ 217.08


bestellen

Artikel-Nr. 7369164


Diesen Artikel in meine
Wunschliste
Diesen Artikel
weiterempfehlen
Diesen Preis
beobachten

Weitersagen:



Autor(en): 
  • Philip D Laird
  • Learning from Good and Bad Data 
     

    (Buch)
    Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 2 Artikel!


    Übersicht

    Auf mobile öffnen
     
    Lieferstatus:   i.d.R. innert 14-24 Tagen versandfertig
    Veröffentlichung:  März 1988  
    Genre:  EDV / Informatik 
    ISBN:  9780898382631 
    EAN-Code: 
    9780898382631 
    Verlag:  Springer Us 
    Einband:  Gebunden  
    Sprache:  English  
    Serie:  #47 - The Springer International Eng  
    Dimensionen:  H 234 mm / B 156 mm / D 14 mm 
    Gewicht:  503 gr 
    Seiten:  212 
    Bewertung: Titel bewerten / Meinung schreiben
    Inhalt:
    This monograph is a contribution to the study of the identification problem: the problem of identifying an item from a known class us­ ing positive and negative examples. This problem is considered to be an important component of the process of inductive learning, and as such has been studied extensively. In the overview we shall explain the objectives of this work and its place in the overall fabric of learning research. Context. Learning occurs in many forms; the only form we are treat­ ing here is inductive learning, roughly characterized as the process of forming general concepts from specific examples. Computer Science has found three basic approaches to this problem: . Select a specific learning task, possibly part of a larger task, and construct a computer program to solve that task . . Study cognitive models of learning in humans and extrapolate from them general principles to explain learning behavior. Then construct machine programs to test and illustrate these models. xi Xll PREFACE . Formulate a mathematical theory to capture key features of the induction process. This work belongs to the third category. The various studies of learning utilize training examples (data) in different ways. The three principal ones are: . Similarity-based (or empirical) learning, in which a collection of examples is used to select an explanation from a class of possible rules.

      



    Wird aktuell angeschaut...
     

    Zurück zur letzten Ansicht


    AGB | Datenschutzerklärung | Mein Konto | Impressum | Partnerprogramm
    Newsletter | 1Advd.ch RSS News-Feed Newsfeed | 1Advd.ch Facebook-Page Facebook | 1Advd.ch Twitter-Page Twitter
    Forbidden Planet AG © 1999-2024
    Alle Angaben ohne Gewähr
     
    SUCHEN

     
     Kategorien
    Im Sortiment stöbern
    Genres
    Hörbücher
    Aktionen
     Infos
    Mein Konto
    Warenkorb
    Meine Wunschliste
     Kundenservice
    Recherchedienst
    Fragen / AGB / Kontakt
    Partnerprogramm
    Impressum
    © by Forbidden Planet AG 1999-2024