SFr. 83.00
€ 89.64


bestellen

Artikel-Nr. 34019044


Diesen Artikel in meine
Wunschliste
Diesen Artikel
weiterempfehlen
Diesen Preis
beobachten

Weitersagen:



Autor(en): 
  • Jie Zhou
  • Zhiyuan Liu
  • Introduction to Graph Neural Networks 
     

    (Buch)
    Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 2 Artikel!


    Übersicht

    Auf mobile öffnen
     
    Lieferstatus:   i.d.R. innert 5-10 Tagen versandfertig
    Veröffentlichung:  März 2020  
    Genre:  EDV / Informatik 
    ISBN:  9783031004599 
    EAN-Code: 
    9783031004599 
    Verlag:  Springer International Publishing 
    Einband:  Kartoniert  
    Sprache:  English  
    Dimensionen:  H 235 mm / B 191 mm / D 8 mm 
    Gewicht:  255 gr 
    Seiten:  128 
    Zus. Info:  Paperback 
    Bewertung: Titel bewerten / Meinung schreiben
    Inhalt:
    Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool. This book provides a comprehensive introduction to the basic concepts, models, and applications of graph neural networks. It starts with the introduction of the vanilla GNN model. Then several variants of the vanilla model are introduced such as graph convolutional networks, graph recurrent networks, graph attention networks, graph residual networks, and several general frameworks. Variants for different graph types and advanced training methods are also included. As for the applications of GNNs, the book categorizes them into structural, non-structural, and other scenarios, and then it introduces several typical models on solving these tasks. Finally, the closing chapters provide GNN open resources and the outlook of several future directions.

      



    Wird aktuell angeschaut...
     

    Zurück zur letzten Ansicht


    AGB | Datenschutzerklärung | Mein Konto | Impressum | Partnerprogramm
    Newsletter | 1Advd.ch RSS News-Feed Newsfeed | 1Advd.ch Facebook-Page Facebook | 1Advd.ch Twitter-Page Twitter
    Forbidden Planet AG © 1999-2024
    Alle Angaben ohne Gewähr
     
    SUCHEN

     
     Kategorien
    Im Sortiment stöbern
    Genres
    Hörbücher
    Aktionen
     Infos
    Mein Konto
    Warenkorb
    Meine Wunschliste
     Kundenservice
    Recherchedienst
    Fragen / AGB / Kontakt
    Partnerprogramm
    Impressum
    © by Forbidden Planet AG 1999-2024