SFr. 206.00
€ 222.48


vorbestellen

Artikel-Nr. 40935086


Diesen Artikel in meine
Wunschliste
Diesen Artikel
weiterempfehlen
Diesen Preis
beobachten

Weitersagen:



Autor(en): 
  • John A. Burns
  • Andrew J. Kurdila
  • Andrea L'Afflitto
  • Data-Driven, Nonparametric, Adaptive Control Theory 
     

    (Buch)
    Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 3 Artikel!


    Übersicht

    Auf mobile öffnen
     
    Lieferstatus:   Vorankündigung
    Veröffentlichung:  ANGEKÜNDIGT (April 2025)  
    Genre:  Schulbücher 
     
    Control and Systems Theory / Control over Hilbert Spaces / Data-driven Adaptive Control / Distributed-parameter Systems / Functional Analysis / Funktionalanalysis und Abwandlungen / Model Reference Adaptive Control / MRAC / Native Spaces / Regelungstechnik / Reproducing Kernel Hilbert Spaces / Robust Adaptive Control / Systems Theory, Control
    ISBN:  9783031780028 
    EAN-Code: 
    9783031780028 
    Verlag:  Springer International Publishing 
    Einband:  Gebunden  
    Sprache:  English  
    Dimensionen:  H 235 mm / B 155 mm / D  
    Seiten:  311 
    Illustration:  XII, 311 p. 84 illus., 64 illus. in color., farbige Illustrationen, schwarz-weiss Illustrationen 
    Bewertung: Keine Bewertung vor Veröffentlichung möglich.
    Inhalt:
    Data-Driven, Nonparametric, Adaptive Control Theory introduces a novel approach to the control of deterministic, nonlinear ordinary differential equations affected by uncertainties. The methods proposed enforce satisfactory trajectory tracking despite functional uncertainties in the plant model. The book employs the properties of reproducing kernel Hilbert (native) spaces to characterize both the functional space of uncertainties and the controller's performance. Classical control systems are extended to broader classes of problems and more informative characterizations of the controllers' performances are attained.

    Following an examination of how backstepping control and robust control Lyapunov functions can be ported to the native setting, numerous extensions of the model reference adaptive control framework are considered. The authors' approach breaks away from classical paradigms in which uncertain nonlinearities are parameterized using a regressor vector provided a priori or reconstructed online. The problem of distributing the kernel functions that characterize the native space is addressed at length by employing data-driven methods in deterministic and stochastic settings.

    The first part of this book is a self-contained resource, systematically presenting elements of real analysis, functional analysis, and native space theory. The second part is an exposition of the theory of nonparametric control systems design. The text may be used as a self-study book for researchers and practitioners and as a reference for graduate courses in advanced control systems design. MATLAB® codes, available on the authors' website, and suggestions for homework assignments help readers appreciate the implementation of the theoretical results.

      



    Wird aktuell angeschaut...
     

    Zurück zur letzten Ansicht


    AGB | Datenschutzerklärung | Mein Konto | Impressum | Partnerprogramm
    Newsletter | 1Advd.ch RSS News-Feed Newsfeed | 1Advd.ch Facebook-Page Facebook | 1Advd.ch Twitter-Page Twitter
    Forbidden Planet AG © 1999-2025
    Alle Angaben ohne Gewähr
     
    SUCHEN

     
     Kategorien
    Im Sortiment stöbern
    Genres
    Hörbücher
    Aktionen
     Infos
    Mein Konto
    Warenkorb
    Meine Wunschliste
     Kundenservice
    Recherchedienst
    Fragen / AGB / Kontakt
    Partnerprogramm
    Impressum
    © by Forbidden Planet AG 1999-2025