SFr. 107.00
€ 115.56


bestellen

Artikel-Nr. 40573795


Diesen Artikel in meine
Wunschliste
Diesen Artikel
weiterempfehlen
Diesen Preis
beobachten

Weitersagen:



Autor(en): 
  • Jeroen Berrevoets
  • Krzysztof Kacprzyk
  • Zhaozhi Qian
  • Causal Deep Learning: Encouraging Impact on Real-world Problems Through Causality 
     

    (Buch)
    Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 2 Artikel!


    Übersicht

    Auf mobile öffnen
     
    Lieferstatus:   i.d.R. innert 7-14 Tagen versandfertig
    Veröffentlichung:  August 2024  
    Genre:  EDV / Informatik 
    ISBN:  9781638284000 
    EAN-Code: 
    9781638284000 
    Verlag:  Now Publishers Inc 
    Einband:  Kartoniert  
    Sprache:  English  
    Dimensionen:  H 234 mm / B 156 mm / D 7 mm 
    Gewicht:  204 gr 
    Seiten:  126 
    Zus. Info:  Paperback 
    Bewertung: Titel bewerten / Meinung schreiben
    Inhalt:
    Causality has the potential to truly transform the way we solve a large number of real-world problems. Yet, so far, its potential largely remains to be unlocked as causality often requires crucial assumptions which cannot be tested in practice. This monograph, entitled Causal Deep Learning (CDL), presents a new way of looking at causality. The causal deep learning framework in this monograph spans three dimensions: (1) a structural dimension, which incorporates partial yet testable causal knowledge rather than assuming either complete or no causal knowledge among the variables of interest; (2) a parametric dimension, which encompasses parametric forms that capture the type of relationships among the variables of interest; and (3) a temporal dimension, which captures exposure times or how the variables of interest interact (possibly causally) over time. The CDL framework used enables precise categorisation and comparison of causal statistical learning methods. This categorisation is used to provide a comprehensive review of the CDL field. More importantly, CDL enables progress on a variety of real-world problems by aiding partial causal knowledge (including independencies among variables) and quantitatively characterising causal relationships among variables of interest (possibly over time). The framework used clearly identifies which assumptions are testable and which are not, so the resulting solutions can be judiciously adopted in practice. This formulation helps to combine or chain causal representations to solve specific problems without losing track of which assumptions are required to build these solutions, pushing real-world impact in healthcare, economics and business, environmental sciences and education, through causal deep learning.

      



    Wird aktuell angeschaut...
     

    Zurück zur letzten Ansicht


    AGB | Datenschutzerklärung | Mein Konto | Impressum | Partnerprogramm
    Newsletter | 1Advd.ch RSS News-Feed Newsfeed | 1Advd.ch Facebook-Page Facebook | 1Advd.ch Twitter-Page Twitter
    Forbidden Planet AG © 1999-2024
    Alle Angaben ohne Gewähr
     
    SUCHEN

     
     Kategorien
    Im Sortiment stöbern
    Genres
    Hörbücher
    Aktionen
     Infos
    Mein Konto
    Warenkorb
    Meine Wunschliste
     Kundenservice
    Recherchedienst
    Fragen / AGB / Kontakt
    Partnerprogramm
    Impressum
    © by Forbidden Planet AG 1999-2024