SFr. 188.00
€ 203.04


bestellen

Artikel-Nr. 32115385


Diesen Artikel in meine
Wunschliste
Diesen Artikel
weiterempfehlen
Diesen Preis
beobachten

Weitersagen:


Herausgeber: 
  • Takeo Ohsawa
  • Norihiko Minami
  • Bousfield Classes and Ohkawa's Theorem: Nagoya, Japan, August 28-30, 2015 
     

    (Buch)
    Dieser Artikel gilt, aufgrund seiner Grösse, beim Versand als 3 Artikel!


    Übersicht

    Auf mobile öffnen
     
    Lieferstatus:   i.d.R. innert 7-14 Tagen versandfertig
    Veröffentlichung:  März 2021  
    Genre:  Schulbücher 
    ISBN:  9789811515903 
    EAN-Code: 
    9789811515903 
    Verlag:  Springer Nature Singapore 
    Einband:  Kartoniert  
    Sprache:  English  
    Dimensionen:  H 235 mm / B 155 mm / D 23 mm 
    Gewicht:  769 gr 
    Seiten:  448 
    Zus. Info:  Paperback 
    Bewertung: Titel bewerten / Meinung schreiben
    Inhalt:
    This volume originated in the workshop held at Nagoya University, August 28¿30, 2015, focusing on the surprising and mysterious Ohkawa's theorem: the Bousfield classes in the stable homotopy category SH form a set. An inspiring, extensive mathematical story can be narrated starting with Ohkawa's theorem, evolving naturally with a chain of motivational questions: Ohkawa's theorem states that the Bousfield classes of the stable homotopy category SH surprisingly forms a set, which is still very mysterious. Are there any toy models where analogous Bousfield classes form a set with a clear meaning? The fundamental theorem of Hopkins, Neeman, Thomason, and others states that the analogue of the Bousfield classes in the derived category of quasi-coherent sheaves Dqc(X) form a set with a clear algebro-geometric description. However, Hopkins was actually motivated not by Ohkawa's theorem but by his own theorem with Smithin the triangulated subcategory SHc, consisting of compact objects in SH. Now the following questions naturally occur: (1) Having theorems of Ohkawa and Hopkins-Smith in SH, are there analogues for the Morel-Voevodsky A1-stable homotopy category SH(k), which subsumes SH when k is a subfield of C?, (2) Was it not natural for Hopkins to have considered Dqc(X)c instead of Dqc(X)? However, whereas there is a conceptually simple algebro-geometrical interpretation Dqc(X)c = Dperf(X), it is its close relative Dbcoh(X) that traditionally, ever since Oka and Cartan, has been intensively studied because of its rich geometric and physical information. This book contains developments for the rest of the storyand much more, including the chromatics homotopy theory, which the Hopkins¿Smith theorem is based upon, and applications of Lurie's higher algebra, all by distinguished contributors.

      



    Wird aktuell angeschaut...
     

    Zurück zur letzten Ansicht


    AGB | Datenschutzerklärung | Mein Konto | Impressum | Partnerprogramm
    Newsletter | 1Advd.ch RSS News-Feed Newsfeed | 1Advd.ch Facebook-Page Facebook | 1Advd.ch Twitter-Page Twitter
    Forbidden Planet AG © 1999-2024
    Alle Angaben ohne Gewähr
     
    SUCHEN

     
     Kategorien
    Im Sortiment stöbern
    Genres
    Hörbücher
    Aktionen
     Infos
    Mein Konto
    Warenkorb
    Meine Wunschliste
     Kundenservice
    Recherchedienst
    Fragen / AGB / Kontakt
    Partnerprogramm
    Impressum
    © by Forbidden Planet AG 1999-2024